1 Introduction

The Regulation Aircraft Stand Allocation Schiphol [8] is intended to provide insight in the aircraft stand allocation policy at Schiphol as well as rights and obligations of stakeholders in this process. The target audience consists of airlines, handlers and Schiphol (internal use).

This first chapter introduces Schiphol (1.1) and the allocation process (1.2). References to different sources are marked in brackets [x] and can be found in chapter 6.3.

1.1 Amsterdam Airport Schiphol - priorities

Amsterdam Airport Schiphol (AAS, Schiphol) is a dynamic and efficient transport hub offering air, rail and road connections. It offers all passengers, visitors, employees and employers at AAS all the services and facilities they require. AAS aims to achieve this in a responsible manner: efficient, reliable, sustainable, and with inspiration and hospitality.

AAS also manages the aprons. This involves allocating aircraft stands, assigning passenger gates and directing the apron buses. The growth in air traffic volume, diversity of customer needs and the increasing number of criteria that planners and managers must deal with, make this a complex and challenging task. AAS is devoting a great deal of attention to two concrete priorities: overall punctuality and the reliability of transfer connections and makes every effort to improve both. Studies have shown that passengers and airlines alike attach great importance to these two aspects. The quality of service at AAS is a defining characteristic of the airport and is a shared interest of all stakeholders at AAS. These aspects form the foundation of RASAS.

1.2 The aircraft stand allocation process

AAS performs different steps in the process towards an optimal operational gate planning. These steps are performed at different moments in time and with different goals but always with the same principles (chapter 4.1), restrictions (chapter 4.2) and optimizations (chapter 4.3).

<table>
<thead>
<tr>
<th>Planning</th>
<th>RASAS</th>
<th>Actor</th>
<th>Time to operations</th>
<th>For</th>
<th>Goal(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity planning</td>
<td>Ch. 3 & ch. 4</td>
<td>OPS PDC</td>
<td>3 years</td>
<td>Next year, third year</td>
<td>Capacity planning</td>
</tr>
<tr>
<td>The season plan and zoning</td>
<td>Ch. 4</td>
<td>OPS WAP</td>
<td>3 months</td>
<td>Next season</td>
<td>Short term capacity planning</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Determination of zone size</td>
</tr>
<tr>
<td>Allocation of aircraft to stands</td>
<td>Ch. 4</td>
<td>Gate planning</td>
<td>1 day</td>
<td>Tomorrow</td>
<td>Operational Capacity Planning for stakeholders</td>
</tr>
<tr>
<td>Operational assignment</td>
<td>Ch. 5</td>
<td>Gate planning</td>
<td>Operational</td>
<td>Now</td>
<td>Gate assignment</td>
</tr>
</tbody>
</table>

Table 1: the different planning cycles

2 Rights and obligations

In order to have an optimal aircraft handling process, it is necessary to set some basic rights and obligations in place. These are outlined in this chapter.

Although many of the activities mentioned are outsourced to handlers, it is always the airline’s responsibility to meet the requirements.

2.1 Arrival and departure

In principle, a flight shall arrive and depart at their scheduled arrival and departure times.

- If a flight does not operate according to schedule, the airline is obliged to communicate the new estimated arrival and departure times to the airport via CISS without any delay, 24/7.
- In addition, if a flight does not operate according to schedule for a longer period, the schedule shall be adjusted accordingly.
- In addition, if a flight schedule is not adjusted according to the actual flight execution, AAS reserves the right to plan a flight according to their historical estimated arrival and departure times.

Off-schedule is defined as 15 or more minutes early or late, compared to the schedule communicated to AAS. This will be calculated per flight number; the average deviation of at least 10 flights per season.

Non-compliance with the rules set on arrival and departure times as introduced above, can result in a warning and the requirement to deliver an improvement plan to AAS with an agreement with both parties on how and when the performance will improve. If this process leads to unsatisfactory results, meaning that either there is no cooperation or does not lead to the agreed improvement, AAS has the right to allocate the flight in such a way it does not negatively impact flight operations of other airlines and airport capacity. This measure will only be used if other parties are disadvantaged by the off-schedule performance and is not used as punishment.

In these non-compliance measures, priority is given to the flights that are most disruptive to other airlines.

2.2 Reallocation (towing & parking)

In order to create gate connected capacity, instructions will be issued to the airline handler to tow the aircraft to a parking stand after the arriving flight is handled. This is time based (see table 2). The aircraft will be temporarily parked on a remote aircraft stand. When the departing aircraft stand is available, the aircraft will be towed to be on time for the departing procedure. Table 2 shows the norms used for turnaround time and handling time in the decision to tow an aircraft to a remote stand. The target for a towing procedure is 10 minutes, target minimum time at a remote stand is 30 minutes.

<table>
<thead>
<tr>
<th>CONDITIONS</th>
<th>RULES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft category</td>
<td>Cat. >=5</td>
</tr>
<tr>
<td>Turnaround time</td>
<td><210 minutes</td>
</tr>
<tr>
<td>OUTCOMES</td>
<td>Tow aircraft to a remote stand</td>
</tr>
<tr>
<td>Maximum aircraft stand occupation time for inbound flight</td>
<td>75 min.</td>
</tr>
<tr>
<td>Target aircraft stand occupation time for outbound flight</td>
<td>85 min.</td>
</tr>
</tbody>
</table>
Table 2: norm for reallocation (Dutch: afsleepnorm)

These norms also apply in the case of technical issues. Note that a towed aircraft on a turnaround flight may be assigned to different outbound and inbound stands.

If an aircraft is subject to AAS’s reallocation rules, the airline is obliged to move the aircraft within the applicable norms:

- Independently of other previous or subsequent flights scheduled on the same gate.
- Independently of the reason for reallocation.
- At all times, also during night hours.

Aircraft are only subject to the reallocation rules if capacity requires so. A distinction is made between short (<18 hours per aircraft type/registration) and long (>18 hours per aircraft type/registration) parking.

AAS has possibilities to park aircraft that do not fly for shorter or longer period on specific parking platforms, however the stands on these platforms are limited. Apart from special circumstances, AAS makes the use of parking platforms at AAS only available for airlines that operate a timetable to or from Schiphol, and only for aircraft that are used for that purpose. AAS holds the principle that all non-operational aircraft should be parked elsewhere (e.g. on regional airports or abroad). AAS may refuse a parking request in case no capacity is available and/or AAS is of the opinion that an airline should make use of an alternative on its own facilities first. Airlines with own facilities may be asked to provide a specification of the number of available parking stands per aircraft category.

Based on this AAS decides whether to process a request from an airline.

AAS applies the following allocation rules for parking capacity:

- A Parking request (aircraft type & period) must be filed two weeks in advance to the Business Partner Airline via customersupport@schiphol.nl.
- AAS will send an acknowledgment of receipt within 3 working days, stating whether the request can be taken into consideration.
- A request from an airline that can give reasons why parking at AAS is necessary and has a dependence for its operation on AAS (e.g. standard parking, maintenance, service, logistics) is given priority to airlines who can not.
- Otherwise, the priority of requests from other airlines is determined on the basis of the highest numbers of flights to and from AAS and whether there is a most continuous flight and associated parking schedule to and from AAS.
- Airlines may submit preferences with regard to the location and any other wishes. The preference principle from RASAS 4.4 applies here.
- Parking stands are allocated on the basis of the "best fit" principle (see RASAS 4.1.2). An aircraft is allocated to the smallest available parking stand.
- In case no capacity is available at AAS and an aircraft type/registration nevertheless enters the airport without permission, the airline concerned will be summoned to depart immediately.

Performance towing norms
Performance in non-compliance with the norms is defined as 15 minutes or more late compared to the norms on towing after arrival as set in table 2. This is calculated by the average delay per flight number over at least 3 flights per season. This will be calculated per flight number/registration; the average deviation of at least 3 flights per season.

Non-compliance with the rules set on arrival and departure times as introduced above, can result in a warning and the requirement to deliver an improvement plan to AAS with an agreement with both parties on how and
when the performance will improve. If this process leads to unsatisfactory results, meaning that either there is no cooperation or does not lead to the agreed improvement, AAS has the right to allocate the flight in such a way it does not negatively impact flight operations of other airlines and airport capacity. This measure will only be used if other parties are disadvantaged by the off-schedule performance and is not used as punishment.

In these non-compliance measures, priority is given to the flights that are most disruptive to other airlines.

2.3 Provide flight data

AAS’ one-day-ahead planning and changes to the aircraft stand allocation plan on the day of operations are based on the flight data in the AAS Central Information System (CISS). This data shall be supplied by the airline and/or handling agents compliant with AAS Charges & Conditions [1], for each flight. In addition, AAS requires additional information for each flight.

Combined, this leads to the following information requirement, correct and up-to-date:

- Arrival and departure times
- Date of the flight
- Type of aircraft
- Registration and flight links
- Route (essential for determining S/NS/NS Unscreened status)
- Flight status (passenger flight, freight flight, etc.)
- Total number of inbound and outbound passengers
- Total number of transfer passengers
- Handling agent
- Passenger flight (PL/PC) or freight (FL/FC)

Besides the data requirements per flight as shown above, AAS requires for each airline/aircraft type (not limited to):

- MTT (Minimum Turn-around Time)

All this information must be entered correctly in CISS by 12:00 AM (local time) on the day before the day of the flight.

In case of any changes the airline and/or handling agent has to adjust this immediately in CISS, in order to have continuously accurate data to update the gate planning.

AAS is a certified Collaborative Decision Making (CDM) Airport and requires all partners to follow the CDM procedures.

Flights for which data is missing or not provided will receive low priority in allocation of aircraft stands and gates. Failure to provide number of passengers on board will default to 1 (one) passenger, resulting in allocation at low-throughput gates and/or allocation of only one passenger transport bus where applicable.

2.4 Deviation from RASAS principles

AAS reserves the right to deviate from any of the policy principles if circumstances so require. If an airline and/or handling agent wishes to deviate from the AAS Policy Principles and AAS reaches a non-discriminatory, transparent and objectively determined decision on the matter, a modified scheme may be agreed on.
3 The season plan and zoning

The season plan is a week schedule for the busiest week of the season and other exceptional weeks (for example due to a holiday or planned work) based on the expected flight schedule provided by the airlines.

3.1 The season plan

Twice a year, a season plan is produced by AAS, approximately three months before the start of winter time and summer time. The plan contains a gate planning based on RASAS principles (chapter 4) and the flight schedules provided by airlines. The purpose of this planning is to determine the zoning structure (section 3.2) and is the basis for the one-day-ahead planning made by AAS gate planning during the specific season. In addition, the season plan will reveal capacity issues during the oncoming season. This also means that there is information on the number of remote handling operations necessary to provide enough aircraft stands.

3.2 Zoning

All stands where passenger and/or cargo handling is allowed are divided into zones:
- Central transfer zone and common use zone (3.2.1 & 3.2.2)
- General aviation (3.2.3)
- Cargo (3.2.4)

The size of the zones and the allocation of airlines and flights to them, is determined in the season plan.

3.2.1 Central transfer zone and common use zone

AAS policy aims to consolidate and strengthen AAS’s hub function. In this connection, it is important to ensure that the hub carriers, which are the most important suppliers of transfer passengers to the airport, are given the opportunity to safeguard the reliability of the transfer connections by reducing travelling times for passengers and staff. The ‘central transfer zone’ provides this opportunity by allocating these flights close together in a central zone. Airlines that transport few transfer passengers or none at all are allocated to the ‘Common Use Zone’.

The size of each zone is not fixed, but may be adjusted each season by AAS depending on changes to the restrictions, policy principles or flight data. Prior to the commencement of each new schedule, the zoning structure will be published on the AAS website [5]. If changing circumstances call for adaptations before the end of a season, AAS will consult the parties involved first.

As zones are set every season without the availability of operational data, the zoning is based on airline and not on the actual number of transfer passengers on a flight. The number of remote stands in a zone is balanced in such a way that the effort connected to remote handling is shared between zones.

Zoning is applicable for connected, semi-connected (3.2.1.1) and remote handling (4.5.1).

3.2.1.1 Allocation to semi connected zone

3.2.1.1.1 Quick Turnaround Concept (QTC) on Pier H/M

Prior to each new season, airlines that qualify (or wish to qualify) for allocation to Pier H/M can submit their proposed flight schedules to AAS for the relevant season. Based on this information, AAS will check the
proposed flight schedules against the preconditions and criteria stated below. Based on this information, AAS will draw up a planning schedule for Pier H/M for the relevant season.

Whether an airline qualifies for the H/M pier or not, is determined based on the criteria below.

QTC on pier H/M is:
1) Available exclusively for airlines that offer point-to-point connections to and from AAS.
2) Available exclusively for flights that do not offer their passengers transfer possibilities at AAS.
3) Available exclusively for flights with an origin whose security status satisfies EU guidelines (NS Screened).

If demand for gates on Pier H/M exceeds capacity, priorities will be applied in order to allocate capacity to Pier H/M or available alternative location. Below is the list of the relevant allocation criteria, ordered by priority and mutual coherence.

1) Flights of an airline with the shortest scheduled and actual turnaround time.
2) Best-fit of aircraft (see section 4.1.3).
3) Flights of an airline that has the highest total number of flights in a season.
4) Flights of an airline that has a continuous flight schedule throughout the season (flights on fixed days and times).

Frequent deviations by airlines from the published schedules, either as a result of scheduling changes or of regular delays compared to the scheduled times, will result in adjustments to the plan and/or a lower priority for allocation to Pier H/M.

Ad hoc (charter) flights, which are not announced to AAS at the moment the season plan for the season concerned is drawn up, may be eligible for allocation to Pier H/M, if there is capacity. AAS reserves the right to refuse the allocation of an ad hoc (charter) flight to Pier H/M if one of the following criteria apply:
1) The request for handling the ad hoc (charter) flight(s) is not announced to AAS on or before Wednesday in the week preceding the week in which the flight is to take place,
2) No other flights are being operated on Pier H/M at the moment the requested flight is to take place (for efficiency or cost considerations).

3.2.1.2 Regional platform
Prior to each new season, airlines that qualify (or wish to qualify) for allocation to the regional platform can submit their proposed flight schedules to AAS for the relevant season. Based on this information, AAS will check the proposed flight schedules against the preconditions and criteria stated below. Based on this information, AAS will draw up a planning schedule for the regional platform for the relevant season.

Whether an airline qualifies for the Regional platform or not, is determined based on the criteria below.

The regional platform consists of:
1) Stands on the platform A/B with bus transport from/to terminal.
2) Departing passenger process via semi connected and/or busgates, located at the pier B/C (Schengen) and pier D (non-Schengen).
3) Arriving passenger process via bus arrival point.
4) Available exclusively for airlines that offer their passengers transfer possibilities at AAS.

If demand for Regional gates/stands exceeds capacity, priorities will be applied in order to allocate capacity to Regional platform or available alternative location. Below is the list of the relevant allocation criteria, ordered by priority and mutual coherence.

1) Flights of an airline with the shortest scheduled and actual turnaround time.
2) Best-fit of aircraft (see section 4.1.3).
3) Flights of an airline that has the highest total number of flights in a season.
4) Flights of an airline that has a continuous flight schedule throughout the season (flights on fixed days and times).

3.2.2 General Aviation at Schiphol-East
Specific allocation criteria and specific security control requirements apply to flights from the General Aviation area at Schiphol-East due to the special security status of Apron K (non-SRA-CP).

<table>
<thead>
<tr>
<th>Qualification</th>
<th>Seats</th>
<th>Permission</th>
<th># per year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Aviation</td>
<td>all</td>
<td>Always allowed</td>
<td>Not restricted</td>
</tr>
<tr>
<td>Passenger flight</td>
<td><20</td>
<td>Always allowed</td>
<td>Not restricted</td>
</tr>
<tr>
<td></td>
<td>20-50</td>
<td>Permission required by AAS</td>
<td>Max. 50 flights per year</td>
</tr>
<tr>
<td></td>
<td>>= 50</td>
<td>Not allowed</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: allocation criteria apron K

Business Aviation flights are always allowed on K-apron, regardless the number of seats. Passenger flights with less than 20 passengers are also allowed at the K-apron. Passenger flights with 20 to 50 passengers can be allocated to the K-apron when permission is granted. A maximum of 50 flights per year with equal to or more than 20 passengers. This number is calculated on a first-come first-served basis.

Passenger flights with equal to or more than 50 passengers are not allowed at the K-apron. In exceptional cases, AAS can permit such a flight. In order to be eligible for this procedure, AAS must be contacted at least 96 hours prior to the flight including motivation. To receive permission for a flight requiring permission, contact AAS: events@schiphol.nl.

3.2.3 Cargo
For Cargo handling the following principles are leading:
- Full freighters will be allocated on Romeo or Sierra platform.
- Clustering if possible (if capacity allows) to or near the preferred freight warehouse.
- Passenger flights with cargo in the belly must be coded and will be allocated as a passenger flight.
- Small freight aircrafts can also be allocated incidental on K-platform.

If demand for cargo stands exceeds capacity, priorities will be applied in order to allocate capacity to cargo platforms or available alternative location. Below is the list of the relevant allocation criteria, ordered by priority and mutual coherence.
1) Flights of an airline with the shortest scheduled and actual turnaround time.
3) Best-fit of aircraft (see section 4.1.3).
4) Flights of an airline that has the highest total number of flights in a season.
5) Flights of an airline that has a continuous flight schedule throughout the season (flights on fixed days and times).
4 Allocation of aircraft to stands

The allocation of aircraft to stands follows certain principles (4.1). These principles support AAS’s goal to be an efficient hub airport. However, the extent to which these principles can be met is limited by physical and regulatory restrictions (4.2). Unfortunately, sometimes, the principles cannot be met and the outcome of the planning is infeasible. In these cases, AAS gate planning will make sure a feasible planning is made by using control measures (4.5). AAS uses some criteria to optimize the gate planning for a stable planning (4.3).

This chapter is written similar to the systematic approach a gate planning follows and rules are introduced in order of hierarchy as much as possible.

4.1 Principles

These first two rules are the basis of the gate planning and are the only relevant rules, in case no other restrictions apply (this sometimes happens on the allocation of remote stands).

4.1.1 Allocate the flight to the right zone
Every season, the airport is divided into different zones in accordance with the process described in chapter 3.

AAS Gate Planning allocates all flights to the appropriate zones. If this is not possible, AAS will assign the flight to the other zone before allocating the flight to a remote aircraft stand. A flight that belongs to a certain zone receives priority over a flight from another zone.

4.1.2 Best fit
Flights are planned according to the 'best-fit' system. This means that aircraft will be allocated to the smallest possible stand available. This allows AAS to make efficient use of the scarce space and therefore be able to allocate as much as possible at a gate connected stand.

4.2 Restrictions

In the previous paragraph, the most basic principles have been introduced. There are however, some restrictions for the use of the infrastructure that always have to be met. This is either based on physical restrictions (4.2.1) or based on regulations from the Dutch government (4.2.2 and 4.2.3). Exceptions to these regulations are only permissible in consultation with the competent governmental bodies.

4.2.1 Physical restrictions
AAS has aircraft stands of different dimensions, in categories from 1 to 10. This categorisation specifies each aircraft stand and aircraft separately. In addition to the physical restrictions, certain aircraft cannot be handled using aircraft stands for technical or safety reasons, for example because the hydrant system cannot be connected or because of passenger bridge restrictions.

AAS draws up an aircraft stand table that indicates the highest possible category for each stand and any handling restrictions applicable to certain stands [3].
4.2.2 Borders and security
In accordance with the agreements between the Dutch State and foreign governmental authorities concerning the free movement of goods and persons, the terminal of AAS has been divided into zones. These zones distinguish between Schengen passengers (who are exempt from border control when travelling between Schengen countries) and non-Schengen passengers. In addition, within the non-Schengen area, there is a distinction between passengers from screened or unscreened airports/countries.

The arrivals and departures hall are freely accessible. Access to lounges and piers is restricted to passengers with a boarding pass and based on their origin or destination. Table 1 indicates which piers and lounges are restricted to passengers based on their origin (for arriving passengers) and destination (for departing passengers).

<table>
<thead>
<tr>
<th>Border status</th>
<th>Pier</th>
<th>Lounge</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B</td>
<td>C</td>
</tr>
<tr>
<td>Schengen</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Non-Schengen - screened</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Non-Schengen - unscreened</td>
<td>no</td>
<td>no</td>
</tr>
</tbody>
</table>

Table 4: Segments of the terminal

A pier that may provide access to more than one border status will be preferred for dual status flights. Not all gates in Pier D are dual status gates. For details, see the map of the border zone per gate, published by AAS [2]. Passengers can only depart from AAS with a Schengen or screened status. Note that in addition, Customs can make a distinction between non-Schengen arrivals for countries within and outside the EU.

4.2.3 Customs
Dutch customs has different types of checks that can be performed upon arriving at a gate at AAS. The applicable kind of check is based on either the origin of a flight or instructions from the Dutch government. These flights can only arrive at E17, E19, E22, E24, G05 and G08. Remote handling for these flights is not allowed.

4.2.4 Works
Due to projects, maintenance and (technical) failure stands can be U/S (Under Service), which could lead to less capacity. In the ICP and season plan an assumption is included for the amount of stands U/S. Works could have temporary effect on allocation rules.

4.3 Integral planning optimizations

From section 4.1 and 4.2 AAS has made a feasible gate planning. In order to optimize the airport processes in the most integral way possible, gate planning takes into account the effects on all airport stakeholders. This is done in the day-ahead planning in different ways. The principles are sorted in priority as much as possible.

4.3.1 Clustering
The aim is to cluster flights contracted with the same handling agent. In addition, flights operated by the same airline will be clustered when possible as to streamline airline-related processes. This leads to less cutting losses in the aircraft turnaround.

4.3.2 Plan stability
When two aircrafts are sequentially scheduled at the same aircraft stand, a separation time is maintained in order to make the planning robust for small deviations. The intended separation time is 20 minutes (10 minutes before and after a flight), based on the scheduled arrival and departure time. The separation time may be different if the situation asks for it. Note: for H/M-pier, the separation is 10 minutes.
In order to spread flights and optimize capacity, adjacent gates can be planned staged.

4.3.3 **Dual status flights**

There are three different statuses for *arriving* flights: Schengen (S), Non-Schengen (NS) and Non-Schengen unscreened (NS unscreened). All *departing* flights are either Schengen (S) or Non-Schengen (NS). For this reason, six different arrival-departure combinations can be made, from which four are so-called dual status flights. Dual status flights are preferable assigned to dual status gates. If no dual status gate is available, the flight will be assigned according to its departing status. In order to match the arriving flight status with the right status of the infrastructure, passengers of the arriving flight will be transported to the terminal by bus (bus@gate) in this case.

NS unscreened/S gates do not exist at AAS. If the ground time of these flights allows so, these flights will be interrupted and towed from a NS unscreened gate to an S gate.

<table>
<thead>
<tr>
<th>Dual status combination</th>
<th>Preferred assignment</th>
<th>Second choice</th>
</tr>
</thead>
<tbody>
<tr>
<td>S/NS</td>
<td>S/NS Dual status gate</td>
<td>NS gate</td>
</tr>
<tr>
<td>NS/S</td>
<td>S/NS Dual status gate</td>
<td>S gate</td>
</tr>
<tr>
<td>NS unscreened/NS</td>
<td>NS unscreened/NS dual status gate</td>
<td>NS gate</td>
</tr>
<tr>
<td>NS unscreened/S</td>
<td>Interruption/towing</td>
<td>S gate</td>
</tr>
</tbody>
</table>

Table 5: Dual status assignments

In section 4.2.3, the location of the different dual status infrastructure is explained.

If there is no suitable pier gate available for a dual status flight, the flight will be handled remote (third choice). When a choice has to be made between multiple dual status flights, a decision will be made based on the conditions in section 4.4.1.

4.3.4 **Planning adjacent aircraft stands**

In order to avoid conflicts in the infrastructure during pushback of aircraft, flights with the same scheduled departure time will not be allocated on adjacent aircraft stand if possible.

4.3.5 **Nightly stopovers**

Passenger flights on a nightly stopover at AAS will be scheduled to depart from the same pier gate, if possible. If this is not possible, instructions will be issued to tow the aircraft to a remote aircraft stand in the interim.

4.4 **Preferred stands and stand acceptance**

AAS will offer a stand and gate to every flight, based on RASAS. All requirements based on rules and regulations are incorporated in the planning as described in section 4.2. Besides these requirements, airlines, handlers and/or other stakeholders may have preferences that lead to a preferred stand or non-acceptance of a stand. A reason for this can be, but is not limited to, a pilot, a special flight or preferences set by the airline on top of rules and regulations.

It is *not possible* to either have dedicated or excluded gate for specific airlines or flights. Any historical or future agreement will be treated as preference. AAS will comply with preferences if this meets the requirements below. The preference:

- Is in compliance with RASAS.
- Has no negative impact on flight operations of other airlines.
- Has no negative effect on total airport capacity. This includes effects on any aspect of the airport flow (e.g. gate capacity, security, customs, etc.).
If an airline chooses to not accept a certain ramp or gate for any reason, AAS will comply with this. However, the flight involved will lose all its rights in order to be able to meet the requirements introduced above (compliance with RASAS, no negative impact on flight operations and airport capacity).

A change in (fixed) preferences can be introduced via the AAS Business Partner. The request will be assessed based on the requirements set above.

Operational (ad-hoc) preferences can be addressed to AAS Gate Planning by the handler before 10:00 (LT) on the day before operations.

4.5 If demand exceeds capacity

After section 4.1 and 4.2, all aircraft are assigned a ramp and gate that meets the most basic principles and restrictions. However, although AAS aims to allocate as much traffic as possible to a gate for connected handling (if preferred), at peak hours this might not be possible due to demand exceeding capacity. AAS Gate Planning uses four methods to solve this:

- Reallocation of aircraft with large ground time (2.2)
- Remote handling of flights (4.5.1)
- Outbound holding/operational towing (4.5.2)
- Inbound holding (4.5.3)

There is no distinct hierarchy in these measures, although gate planning will always focus on maximizing gate connected handling.

4.5.1 Remote handling of flights

If it is not possible to offer a gate connected stand, AAS will allocate a flight on a remote stand and will assign buses, bus gates and bus arrival points to the flight.

Flights without passengers are automatically assigned to remote stands, unless the flight is linked to another flight that does have passengers and there is sufficient capacity available to assign a pier gate to the turnaround flight.

For other flights, the following rules are used:

1) Separate incoming flights with the lowest (transfer) passenger number.
2) Separate departing flight with the lowest (transfer) passenger number.
3) Turnaround flights, with priority to flights with the lowest (transfer) passenger number.

The rules as set above are meant to make it possible to trade off the number of transfer passengers and total number of passengers. This way AAS is able to give a better fulfillment to its hub operation. The rules on remote handling are independent of the zoning.

The amount of passengers given in the flight record will be used by AAS bus management to calculate the number of buses required. If neither the ground handler nor the airline registers any passenger numbers, a single bus will be allocated. This leads to serious handling delay and inconvenience for passengers and is viewed as incompliance according to paragraph 2.4.

Please note that it is important to align your ground handling process with the infrastructure and standard bus schedule in order to contribute to on time departure.

Information about the bus process can be found in chapter 6.3 [6, 7].
4.5.2 **Outbound holding/ operational towing**
When an outbound flight is ready for departure (all handling activities are finished and pushback truck present) and the incoming flight for the specific gate is approaching, the outbound aircraft has to be pushed to a remote position waiting for it’s TSAT.

4.5.3 **Inbound holding**
When all connected and remote gates/stands are occupied, ATC will hold the aircraft on the indicated inbound holding spots.
5 Assignment of gates

On the day of operation, AAS will anticipate on (expected) changes in schedules and disruptions, by changing the day ahead plan with limited consequences for airlines, handlers and passengers as possible. This chapter describes the criteria to make a change to the day ahead plan and the criteria to update the aircraft stand of a flight.

5.1 Decision to change the plan

AAS assigns a new aircraft stand for the flight if there are conflicts in the planning. This can occur in the following cases:

5.1.1 Changed flight data
Flights of which flight data has changed since closure of the one-day-ahead planning and which can no longer be allocated to the scheduled ramp based on the allocation conditions can not to claim the scheduled ramp. Typically these changes involve a change in the type of aircraft or border status zone of the flight.

5.1.2 Changed security conditions
Changes to the security regulations laid down by the Dutch government may require a change to the aircraft stand allocation plan. AAS aims to accommodate extra security checks by allocating an aircraft stand that meet the special security requirements by the governmental bodies.

5.1.3 Early arrival
The scheduled aircraft stand of a flight arriving before the scheduled arrival time may not (yet) be available. AAS will find an alternative to accommodate the early arrival that is the least disruptive for the gate planning. Depending on the type of aircraft, season and time of the day, a 5-minute early arrival may already be disruptive for the aircraft stand allocation plan.

5.1.4 Delayed arrival or departure
Delayed arrival or departure jeopardises the punctuality of both the airline companies and AAS. All parties in the process are expected to take measures to increase punctuality.

5.1.5 Capacity optimization
AAS’s capacity is fully used at some times of the day. As a consequence a required change to the aircraft stand allocation plan may result in multiple updates to other flights to accommodate the change. This also includes aligning with passenger, baggage and landside processes.

5.2 Response to change

In the case of a required change to the aircraft stand allocation plan, as a result of one of the conditions described in section 5.1, AAS gate planning will choose the least disturbing measure to accommodate the change. The measures that can be chosen and their conditions, if any, are listed in this chapter in order of priority. The measure with the highest priority will be applied if appropriate. Note all criteria from chapter 4 also apply to the aircraft stand allocation plan on the day of operation.
5.2.1 Gate change
A gate change is the most common way to response to a disrupting event. AAS Gate Planning will always make sure to perform the least amount of changes possible, especially last minute gate changes. If a gate change will result in a disruption for another airline than the causer, AAS Gate Planning can also choose to assign the disrupting flight to a remote stand.

5.2.2 Clearing an occupied gate
When the scheduled or required aircraft stand for a flight is occupied and a gate change is no option, AAS Gate Planning will try to make the aircraft stand available. This can be achieved by:

- Applying the pit stop procedure to the flight that occupies the aircraft stand. After passengers and baggage have been offloaded (40 minutes after arrival), the aircraft will be towed to a remote stand.
- Allocate a departing flight to a remote aircraft stand to wait for departure. This can either happen if a flight is delayed more than 20 minutes or if the flight is assigned an outbound holding.
- Tow a departing flight without boarded passengers to a remote aircraft stand and assign a bus gate.
6 Communication

6.1 Operational communication

Between 17:00 and 18:00 hours on the day before the day of the flight, the one-day-ahead planning becomes operational and is published via CISS.

Any changes to the flight data (see section 2.4) after the planning schedule has been communicated through CISS may lead to adjustments to that schedule. To ensure the best possible coordination of the allocation process, it is important to ensure that AAS Gate Planning has access to the correct information.

Communication with AAS Gate Planning is arranged through the handling agent, who acts as the representative of the airline. AAS Gate Planning is open 24 hours a day for information, queries and adjustments to aircraft stand and gate planning.

For questions and/or comments about RASAS, please contact the AAS contact person or your AAS business partner.

6.2 Evaluation and announcement of season plan

Several weeks before the start of each new summer or winter schedule, AAS will present the season plan. Prior to the presentation, the handling agents and/or airlines will be contacted to discuss any issues and agree on the season plan. Before the ratification of the season plan, the airlines and the handling agents themselves can submit requests for incorporation into the plan.

Structural changes or new circumstances may call for adjustments to the season preferences before the end of the summer or winter schedule. The parties directly involved in such interim changes will be consulted by the relevant AAS Business partners.

RASAS will be evaluated at least twice a year.

6.3 Contact information & further reading

If you have any questions, the contact details for the RASAS are given below. Of course you may also always ask your business partner.

Service Owner Aircraft: Gaby Allaart +31 (0)653508679 allaart_g@schiphol.nl
A/OPS/PDC/AP

The document below can be found on: [1] Schiphol Airport Charges and Conditions (Flight Information – Data specifications)

Appendix: Glossary and acronyms

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAS</td>
<td>Amsterdam Airport Schiphol / Schiphol</td>
</tr>
<tr>
<td>Aircraft stand</td>
<td>A location where passengers may board/disembark the aircraft</td>
</tr>
<tr>
<td>Allocation</td>
<td>Designation</td>
</tr>
<tr>
<td>Applicable</td>
<td>Currently in effect</td>
</tr>
<tr>
<td>Bus gate</td>
<td>Gate-side waiting area where passengers are picked up by bus and taken to the aircraft.</td>
</tr>
<tr>
<td>Bus drop-off point</td>
<td>Entrance where passengers of inbound flights who are transported by bus enter the terminal.</td>
</tr>
<tr>
<td>Business Aviation</td>
<td>Passenger flights for which no individual tickets are sold to passengers and whose purpose is to transport internal staff or passengers/goods in order to support business activities (i.e. 'business aviation')</td>
</tr>
<tr>
<td>CISS</td>
<td>Central Information System Schiphol</td>
</tr>
<tr>
<td>CDM</td>
<td>Collaborative Decision Making</td>
</tr>
<tr>
<td>Dual-status gate</td>
<td>A pier gate that allows Schengen and Non-Schengen (screened and/or unscreened) passengers to be separated through the configuration of doors.</td>
</tr>
<tr>
<td>Dual status flight</td>
<td>A flight that has a different border zone status for the arriving and departing flight leg. For example: arriving from Schengen and departing to Non-Schengen or the other way around.</td>
</tr>
<tr>
<td>EU</td>
<td>European Union</td>
</tr>
<tr>
<td>Gate-side waiting area</td>
<td>Area in the terminal or piers where passengers wait until they are allowed to board the plane.</td>
</tr>
<tr>
<td>MTT</td>
<td>Minimum Turnaround Time</td>
</tr>
<tr>
<td>MTOW</td>
<td>Maximum take-off weight</td>
</tr>
<tr>
<td>Pier gate</td>
<td>Aircraft stand on a pier. The gate-side waiting area can be connected directly to the aircraft by means of a passenger bridge, or the passengers cover the short distance between the gate-side waiting area and the aircraft on foot.</td>
</tr>
<tr>
<td>Screened/unscreened</td>
<td>A ‘screened’ flight is a flight from a destination with a security level equal to the level demanded by the EU. ‘Unscreened’ being the opposite.</td>
</tr>
<tr>
<td>SRA-CP</td>
<td>Security Restricted Area – Critical Part</td>
</tr>
<tr>
<td>Summer</td>
<td>Last Sunday of March until last Sunday of October</td>
</tr>
<tr>
<td>RASAS</td>
<td>Regulation Aircraft Stand Allocation Schiphol (in Dutch: Regeling Vliegtuig Opstelplaatsen Toewijzing Schiphol)</td>
</tr>
<tr>
<td>Term</td>
<td>Definition</td>
</tr>
<tr>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>Remote aircraft stand</td>
<td>Aircraft stand on a buffer site that passengers can only reach by bus.</td>
</tr>
<tr>
<td>Turnaround</td>
<td>A flight that both arrives and departs from the same aircraft stand without being towed away in the interim.</td>
</tr>
<tr>
<td>QTC</td>
<td>Quick Turnaround Carrier</td>
</tr>
<tr>
<td>Winter</td>
<td>Last Sunday of October until last Sunday of March</td>
</tr>
</tbody>
</table>
Welcome to Amsterdam Airport